sexta-feira, 19 de outubro de 2018


Comprimento de Onda Compton no sistema categorial Graceli.


, [pTEMR1D] [pI] [PF] [pIT] [CG].


E = h   [pTEMR1D] [pI] [PF] [pIT] [CG].


  [pTEMR1D] [pI] [PF] [pIT] [CG].


  [pTEMR1D] [pI] [PF] [pIT] [CG].

(p = m0 v)  [pTEMR1D] [pI] [PF] [pIT] [CG].


 = h/(m0c)   [pTEMR1D] [pI] [PF] [pIT] [CG].


   [pTEMR1D] [pI] [PF] [pIT] [CG].


   [pTEMR1D] [pI] [PF] [pIT] [CG].


()   [pTEMR1D] [pI] [PF] [pIT] [CG].


= c/= h/p= h/m0c =   [pTEMR1D] [pI] [PF] [pIT] [CG].



  [pTEMR1D] [pI] [PF] [pIT] [CG].




 em 1905 (Annalen der Physik 17, p. 132), o físico germano-suíço-norte-americano Albert Einstein (1879-1955; PNF, 1921) propôs que a luz, no vácuo, com velocidade c e freqüência  (e comprimento de onda ), se comporta como um “pacote (quantum) de energia” dado por: E = h , onde h é a constante de Planck. Ainda em 1905 (Annalen der Physik 17; 18, pgs. 891; 639), Einstein demonstrou que a energia total de um corpo (E), de massa de repouso (m0), é dada por E = m c2, onde é a massa inercial. Essa expressão da energia, que também pode ser escrita na forma: E2 = p2c2 + (m0c2)2, com p = m v, mostra que um corpo em  repouso, em que sua velocidade é nula (v = 0), tem energia dada por E0 = m0c2, conhecida como energia de repouso. Mais tarde, em 1909, em trabalhos independentes, Einstein (Physikalische Zeitschrift 10, p. 185) e o físico alemão Johannes Stark (1874-1957; PNF, 1919) (Physikalische Zeitschrift 10, p. 902), propuseram as primeiras idéias de que o quantum de luz Einsteiniano apresentava um caráter dual “onda-partícula”, dado por: , com p = mc.  É oportuno registrar que, como a luz tem velocidade c, a expressão para m vista acima adquire o valor infinito, a menos que m0 = 0, para a luz. Portanto, para a luz, a sua massa m é sempre inercial. Registre-se que, ainda em 1909 (Philosophical Magazine 18, p. 510), os físicos químicos norte-americanos Gilbert Newton Lewis (1875-1946) e Richard Chase Tolman (1881-1948) deduziram as expressões relativistas para a energia () e momento linear  () de uma partícula de massa relativista ( ), partindo da suposição de que as leis de conservação dessas grandezas físicas se conservam em todos os referenciais inerciais.
                   Por sua vez, em 1923 (Physical Review 21, p. 483), o físico norte-americano Arthur Holly Compton (1892-1962; PNF, 1927) estudou o espalhamento de raios-X pela matéria, ocasião em que demonstrou a seguinte expressão: , onde   e  representam, respectivamente, os comprimentos de onda dos raios-X , antes e depois de serem espalhados por elétrons de massa de repouso m0 é o ângulo de espalhamento e  = h/(m0c) significa o  comprimento de onda Compton. Ainda em 1923 (Comptes Rendus de l´Academie des Sciences de Paris 177, pgs. 507; 548; 630), o físico francês, o Príncipe Louis Victor Pierre Raymond de Broglie (1892-1987; PNF, 1929) propôs que o movimento do elétron de massa de repouso m0 e velocidade v, em uma órbita circular atômica é guiado por uma onda-piloto, cujo comprimento de onda  se relaciona com o seu momento linear (p = m0 v) por intermédio da expressão:   = h/p. A partir dessa proposta de Broglie do caráter dual do elétron, que foi confirmada nas célebres experiências realizadas, em 1927 (Nature 119, p. 558; Physical Review 30, p. 705), pelos físicos norte-americanos Clinton Joseph Davisson (1881-1958; PNF, 1937) e Lester Halbert Germer (1896-1971) ao observaram a difração de elétrons em cristais de níquel (Ni), a dualidade onda-partícula foi estendida para toda a matéria, com a luz incluída.
                   Em vista dos resultados apresentados acima, os físicos brasileiros Benedito Tadeu Ferreira de Moraes (n.1963) e José Maria Filardo Bassalo (n.1935), escreveram o trabalho intitulado A Obtenção do Comprimento de Onda Compton por Intermédio de uma Interpretação Quantum-Relativística das Partículas em Repouso (Preprint, 2008), no qual demonstram que a energia relativista das partículas (E), com velocidade v e massa inercial m, pode ser escrita na  forma: , onde o primeiro termo do lado direito representa a energia cinética e o segundo termo, a energia de repouso, e  (definido acima) é o fator de correção relativístico. Da expressão acima segue que, para baixas velocidades, em que , tem-se: . Além disso e ainda no trabalho referido acima, apresentamos a conjectura de que uma partícula (p.e.: elétron) em repouso, possui as seguintes características: energia de repouso E0 = m0c2 = (m0c) c; momentum de repouso p= m0c; comprimento de onda de repouso ; e freqüência de repouso (), relacionados pelas seguintes expressões: = c/= h/p= h/m0c =  e  , com .  
                   Em vista da conjectura proposta , pode-se concluir que: 1) o comprimento de onda Compton () pode ser interpretado como o comprimento de onda associado a uma partícula em repouso (), e que é algo inerente à matéria; 2) há sempre uma onda associada a uma partícula, quer ela esteja em repouso, quer ela esteja em movimento.






Condução Térmica nos Sólidos no sistema categorial Graceli.


EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.



, [pTEMR1D] [pI] [PF] [pIT] [CG].








d2T – k T dx  , [pTEMR1D] [pI] [PF] [pIT] [CG].



(x) = (1/2 +

+ (1/,, [pTEMR1D] [pI] [PF] [pIT] [CG].



f(x) = (1/ , [pTEMR1D] [pI] [PF] [pIT] [CG].




 [ + (1/k) t]  , [pTEMR1D] [pI] [PF] [pIT] [CG].


onde se forma com isto uma trans-intermecânica categorial Graceli, transcendente e indeterminada.






Em 1804 (Journal de Mines 17, p. 203), o físico francês Jean-Baptiste Biot (1774-1862), foi um dos primeiros a apresentar uma expressão matemática para estudar a condução do calor nas barras metálicas, ocasião em que fez a distinção entre condução interna e radiação externa. Sua expressão (representada pela equação diferencial: d2T – k T dx = 0, onde T é a temperatura, k a condutividade térmica, e x a posição), contudo, apresentava uma grande dificuldade, pois não levava em consideração o tempo (t), parâmetro fundamental para tratar a condução térmica.
                   Mais tarde, em 1807, o matemático francês Jean-Baptiste-Joseph Fourier (1768-1830) comunicou à Academia Francesa de Ciências (AFC) uma memória que continha uma expressão matemática para explicar a difusão do calor em corpos de formas especiais (retângulo, anel, esfera, cilindro e prisma), e que contornava a dificuldade da equação de Biot, pois sua expressão envolvia o tempo (t). Os examinadores desse trabalho de Fourier designados pela AFC, foram os matemáticos franceses Gaspard Monge (1746-1818), Sylvestre François Lacroix (1765-1843), Pierre Simon, Marquês de Laplace (1749-1827) e Joseph Louis, Conde de Lagrange (1736-1813); os três primeiros foram favoráveis à publicação, porém, Lagrange foi contra. O argumento usado por este famoso matemático foi o de simplesmente rejeitar a função apresentada por Fourier para expressar a condição inicial da temperatura (a hoje famosa série de Fourier):

(x) = (1/2 +

+ (1/,


por não acreditar que tais funções pudessem ser representadas por séries trigonométricas (seno e cosseno). Lagrange mantinha essa opinião desde a década de 1750, quando trabalhou no problema da corda vibrante. Em vista disso, em 1810, a AFC ofereceu um prêmio a quem resolvesse o problema da condução do calor.     
                Logo em 1811, Fourier preparou um trabalho para concorrer a esse prêmio. Nesse trabalho (uma versão revisada do de 1807), Fourier estudou a difusão do calor em corpos infinitos. No entanto, como nesses casos a periodicidade das séries de Fourier não era capaz de representar as condições iniciais do problema, Fourier substituiu-as por uma integral (mais tarde conhecida como integral de Fourier):

f(x) = (1/ .

Nesse trabalho, as suas últimas seções foram dedicadas aos aspectos físicos do calor, principalmente o problema da intensidade de sua radiação. Ele ganhou o prêmio, porém, o júri – provavelmente por insistência de Lagrange – fez críticas quanto à sua “precisão e generalidade”, consideradas por Fourier como uma repreensão injustificada. [Jerome R. Ravetz and I. Grattan-GuinnessINDictionary of Scientific Biography (Charles Scribner´s Sons, 1981).] É interessante destacar que somente em 1824, esse trabalho de Fourier foi então publicado nas Mémoires de l´Academie des Sciences de l´Institut de France (1819-1820).
                   Apesar dessa proposta, hoje inquestionável, ela não foi imediatamente aceita, tanto que, em 1815, Biot propôs uma nova equação para representar a perda de calor t por um corpo: t = a T + b T3, onde T é a diferença de temperatura entre o corpo quente e o ambiente que o envolve, e a e b são duas constantes. Em 1816, Biot mediu o fluxo de calor em barras metálicas. (M. P. Crosland, INDictionary of Scientific Biography, op. cit.)  
                   Foi somente em 1822, que Fourier publicou seu famoso livro intitulado ThéorieAnalytique de la Chaleur, no qual demonstrou que a condução do calor em um sólido homogêneo e isotrópico satisfaz a seguinte equação diferencial (em notação atual): [ + (1/k) t]  = 0, onde  é o operador Laplaciano que, em coordenadas cartesianas, é igual a:  + . Essa equação é hoje conhecida como equação da difusão ou equação de Fourier. É oportuno destacar que o trabalho de Fourier, exposto nesse livro, apresenta dois pioneiros aspectos históricos. Com efeito, pela primeira vez uma equação foi examinada sob o ponto de vista da consistência das unidades físicas das grandezas evolvidas nelas, podendo então Fourier ser considerado o iniciador da Análise Dimensional; e, também, pela primeira vez, um fenômeno físico foi estudado no âmbito matemático, o mais geral possível, por intermédio de uma equação diferencial parcial [Armand GibertOrigens Históricas da Física Moderna (Fundação Calouste Gulbenkian, 1982)]. Esse livro de Fourier foi importante para estudar o comportamento dos condutores percorridos por uma corrente elétrica.